MMP Learning Seminar.
Week 44:

Contents:

- Birational automovphisms.
- DCC of volumes.
- Biratronilly boundedness.

Birational automorphisms of varieties of general type:
Hacon-Mckermm - $\mathrm{X}_{\mathrm{w}}, 2012$.

Theorem 1.1: If $n$ is a positive integer, then there exists a constant $(\mathrm{cn})$ such that the birational aubomouphism group of a general type vanity $X$ of dimension $n$ has at most $\left((n) \cdot v o l\left(X, K_{x}\right)\right.$ elements.

Hurwitz: $|G| \leq 84(g-1)$.
$X_{120}: S$ smooth prog of gen type. $|G| \leqslant 42^{2} \operatorname{vol}\left(K_{s}\right)$.
Theorem 1.4. (DCC of volumes): $F_{1 x} n \in \mathbb{Z}_{1}>0$.
D the set of global quotient $(X, \Delta)$ where $X$ is a pros variety of dimension $n$.
(1). The set $\left\{v_{0}|(X, \mid x x+\Delta)|(x, \Delta) \in D\right\}$ satisfies the DCC. Further, there are constants, $\delta>0$ and $M$ sit if $(X, \Delta) \in \mathscr{D}$. and $K_{x}+\Delta$ is big. Then:
(2) $\operatorname{Vol}\left(x, k_{x}+\Delta\right)=\delta$ and
(3) $\oint M\left(x_{n+\Delta)}\right.$ bratronal.

Log Biralionally Bounded Varieties:
A set of pairs $\mathcal{D}$ is said to be $\log$ biratiomilly bounded if there exists $(Z, B)$ a par with $B$ reduced, and a projective morphism $Z \longrightarrow T$ where $T$ is of finite types such that for every $(X, \Delta) \in D$. there exists a closed point $t \in T$ and a birational map $f: Z_{t} \rightarrow X$ such that supp Bt containts the support of $E_{x}(f)+f_{*}^{-1} \Delta$.

Lemma 2.3.2: $\varnothing_{D: X}: \cdots \mathbb{D}^{N}$ defined by $|D|$. and assume its birational onto its image $Z$. Then $\operatorname{vo}(D) \geqslant \operatorname{deg} Z$. In particular, $\operatorname{Vol}(D)>1$

Proof: Assume $\phi_{D}$ is a morphiom, $Z$ is non-depenerate of degree $>1$. From the inclusion $\left.\phi^{*} Q_{\mathbb{P N}}(1)\right|_{Z} \longrightarrow O_{x}(D)$, we conclude $\operatorname{Vol}(D) \geqslant \operatorname{Vol}\left(\left.O_{\mathbb{P N}}(1)\right|_{Z}\right)=\operatorname{deg} Z 21$.

Example (small volume):
Define $r_{0}=1$ and $r_{n+1}=r_{n}\left(r_{n+1}\right)$. Let

$$
(X, \Delta)=\left(\mathbb{P}^{n}, \frac{1}{2} H_{0}+\frac{2}{3} H_{1}+\frac{6}{7} H_{2}+\cdots+\frac{r_{n+1}}{r_{m+1}+1} H_{m+1}\right)
$$

Ho.... $H_{n+1}$ are general hyperplanes.
We have that $(X, \Delta) \in D, \operatorname{vol}(X, k x+\Delta)=\frac{1}{r_{n+2}^{n}}$.

Theorem 1.8 (Deformation mvariance of plungenera):
$\pi: X \longrightarrow T$ projective morphism of smooth vanities. $(X, \Delta)$ log canonical and sine over $T$.
(1). Assume $(X, \Delta)$ kit and either $K_{x}+\Delta$ or $\Delta$ is by $m \Delta$ is integral, then $h^{0}\left(X_{t} \mathcal{O}_{x t}\left(m\left(K_{x t}+\Delta t\right)\right)\right)$ is independent of $t \in T$.
(2) $k_{\sigma}\left(X_{t}, K_{x+}+\Delta_{t}\right)$ is independent of $t_{\in T} T$.
(3) $V_{0} 1\left(X_{t}, K_{x_{t}}+\Delta t\right)$ is independent of $t \in T$.

Theorem 1.9 (DCC of volumes on fir bounded):
Fix a set $I \subseteq[0,1]$ which satisfies the DCC
Let $\varnothing$ be a set of sue pairs which is birationally bounded, so that for every $(X, \Delta) \in D, \quad$ coeff $C \Delta) \subseteq I$
Then the set of volumes $\left\{\operatorname{vol}^{\prime}\left(X, K_{x}+\Delta\right) \mid(X, \Delta) \in \varnothing\right\}$. satisfies the DCC

Ideas of the proof (1.4).
Tackle The (1.9) using similar ideas to AS.
We will try to find a bir bounded family which the same volumes that appear on (1,4).
$(X, \Delta) \in D \quad\left(X^{\prime}, \Delta^{\prime}\right)$ which is birationilly boundal.
$x$ bounded family.
$\frac{\downarrow}{T}(19)$ invariance of plungenere
$\left(X^{\prime}, \Delta^{\prime}\right)$ are birational to a single vanity $(Z, B)$.

$$
\begin{aligned}
& \left(X_{1}, \Delta_{i}\right), \ldots \quad f_{i}: X_{i} \longrightarrow Z . \\
& K_{x_{i}}+\Delta_{1}=f_{1}^{*}\left(K_{z}+\Phi_{i}\right)+E_{1} \quad \Phi_{i}=f_{0} \Delta_{1} \leqslant B \\
& E_{i}=\underbrace{+}_{i}-E_{i}^{-}
\end{aligned}
$$

does not
affect valine
Use theory of b-divisors + toroidal blow-ops to prove that 211 these volumes computation can be performed in 2 single $Z^{\prime} \rightarrow Z$.

From (1.4) to (1.1).
Y has dimension $n$

$$
G=\operatorname{Bir}(Y), \quad Y \xrightarrow{G-\text { egurin }} Y^{\prime}, \quad G=\operatorname{Aut}\left(Y^{\prime}\right) \text {. }
$$

Replace $Y$ with a $G$-equivariant resolution $Y^{\prime}$.
Now, we assume $G=\operatorname{Aut}(Y)$ and $Y$ is smooth

$$
\begin{aligned}
& Y \longrightarrow X=Y / G, \quad K_{x}+\Delta \text { is by } \\
& \operatorname{Vo}\left|\left(Y, K_{r}\right)=|G| \operatorname{vol}\left(X, K_{x}+\Delta\right) \geqslant|G| \delta_{n}\right. \\
& |G| \leqslant \frac{1}{\delta_{n}} \operatorname{Vol}\left(Y, K_{r}\right) .
\end{aligned}
$$

Potentially Biralional:
$X$ normal projective, $D$ big $Q$-Cartier, $x, y \in X$ very genenl assume we can find $0 \leq \Delta v_{e}(1-\varepsilon) D$ for some $0<\varepsilon<1$. where $(X, \Delta)$ is not kit at $y$ \& $(X, \Delta)$ is lc e at $x$ and $\{x\}$ is ar $x^{r} \log$ canonical center. Then, we say that
$D$ is potentially birational.
Lemma 2.3.4: $X$ normal qp variety of $\operatorname{dim} n$. $D$ by on $X$
(1) $D$ is potentially birationzl $\Longrightarrow \phi_{k x+[D]}$ is birationel.
(2) $\phi_{D}$ is birational $\Longrightarrow(2 n+1) L D J$ is potentially fir

CB) $\phi_{D}$ is birational $\Longrightarrow \phi_{k x+(2 n+1) D}$ is br e
In particular, $k_{x}+(2 n+1) D$ is by.

Theorem 3.2.5: $(X, \Delta)$ kIt, $(X, \Delta+\Delta 0)$ lc around e \& non-klt at $y$, $V$ non-klt center which contains $x$. H ample with $\operatorname{vol}\left(V, H l_{v}\right)>2 k^{k}$, where $k=\operatorname{dim} V$.

There exists, $H \sim \theta \Delta, \geqslant 0,0 \leqslant a_{1} \leqslant 1$, so that $\left(X, \Delta+a_{0} \Delta_{0}+a_{1} \Delta_{1}\right)$ is around $x$ and non-kll at $y$ and a non-kit center that contains $x$ his $\operatorname{dim}<k$.

Theorem 2.3.6: $(X, \Delta)$ kit pair, where $X$ ho $\operatorname{dim} n$.
$H$ ample, $y_{0} \geqslant 1$ such that $\operatorname{kol}\left(X, y_{0} H\right)>n^{n}$.
E>0 with the following property:
$\int x \in X$ very general, for every $0 \leq \Delta_{0} \sim a \lambda H$ sit $\left(X, \Delta+\Delta_{0}\right)$ $\{$ is lc at $x$ and $V$ is a minimal lc center containing $x$ Then $\operatorname{vol}(V, \lambda H \mid V)>\varepsilon^{k}$ where $k$ is the dimension of $V$ and $\lambda \geqslant 1$.

Then $m H$ is potentially birational, where $m=2 y_{0}(1+y)^{n-1}$

$$
y=2 n / E
$$

Idea: Descending induction on $k$.
Claim: There exists $\Delta_{0} \sim_{a} \lambda H$ with $1 \leqslant \lambda<2 y_{0}(1+y)^{n-1-k}$ with $\left(X, \Delta+\Delta_{0}\right)$ lc al $x$ non-klt at $y$ and a non-klt center $V$ of $\operatorname{dim} \leq k$ contains $x$.

Properties of birationally bounded families:
Lemma 2.4.2: $X, \mathcal{Y}$ are class of varieties (or pain) of dimension $n$.
(1) $X$ bir bounded, $\forall Y \in \mathcal{Y}, Y$ is birational bo $X \in \mathbb{X}$. Then $y$ is fir bounded.
(2) $\forall x \in X$, there exists $D$ Weal with $\phi_{D}$ birationil and $\operatorname{vol}_{0}(D) \leqslant V$. then $X$ is lir bounded.
(3) $X$ is $\log$ bir bounded, $\forall\left(Y, \Delta_{Y}\right) \in \mathcal{Y}$, there exits $(X, \Delta) \in X$ with $f: X \rightarrow Y$ birational map sit.
$\Delta$ contains $f_{x}^{-1} \Delta_{Y}$ and $E_{x}(f)$. Then $y$ is $\log$ birationally bounded.
(4). $\mathcal{H}$ is $\log$ bir bounded $\{x \mid(x, \Delta) \in X\}$ is bir bounded.
(5) $(X, \Delta) \in \mathcal{X}$. there exists a Well ${\underset{U}{ }}_{D}$, with $\phi_{D}: X \rightarrow \mathbb{P}^{N}$. birational onto its image s.l. $K_{x}+m\left(K_{x}+\Delta\right)$

$$
\operatorname{Vol}(D) \leqslant V_{1} \mid \text { if } G=E_{x}\left(\phi_{D^{-1}}\right) \text { red }+\phi_{D_{n}} \Delta_{\mathrm{rad}} .
$$

then $G \cdot H^{n-1} \leq V_{2}$. where $H$ is the ample defined by $D$. Then $\mathcal{X}$ is birationilly lo bounded.

Birationally boonded pairs:
Theorem 3.1: Fix n, $A, \delta>0$. The set of $\log p^{211}$ $(X, \Delta)$ satisfying the following contitions:
(1) $X$ is progective of $\operatorname{dim} n$,
(2) $(X, \Delta)$ is $l c$,
(3) Coeff $\Delta \geqslant \delta$.
(4) there exists $m \in \mathbb{Z}$ 20 with $\operatorname{vol}(X, m(K x+\Delta)) \leqslant A$ and
(5) $\varnothing k_{x}+m(k x+\Delta)$ is birational.

Is log birationally boundad.

Lemma 3.2: $X$ normal pros of $\operatorname{dim} n$.
$M$ bps Cartier and $\phi_{M}$ is birational. Set $H=2(i n+1) M$.
If $D$ is a sum of distinct prime divisors, then

$$
D \cdot H^{n-1} \leq 2^{n} \operatorname{vol}\left(X, K_{x}+D+H\right) .
$$

Proof: (X,D) log smooth, comp of $D$ disjoint
No component of $D$ is contained in the exceptional of $\phi_{M}$
$M \sim A+\underline{B}, \quad K_{x}+\underline{D}+\delta \underline{B}$ is dit for $\delta \ll 1$.

$$
H^{\prime}(K x+E+p M)=0, \quad p 20, \text { i20 } \quad 0 \leq E \leq D .
$$

(2) of (2.3.4). imply that $K x+D+H=A_{1}$ is big, so it has an ample motel

$$
Q(m)=h^{\circ}\left(X, \theta_{x}\left(2 m A_{1}\right)\right)
$$

Set $A_{m}=k_{x}+D+m H$, so $H^{\prime}\left(D, O_{D}\left(A_{m}\right)\right)=0$.

$$
P(m)=h^{\circ}\left(D_{1} O_{D}\left(A_{m}\right)\right) \text { is a polynomial on } m \text {. }
$$

(Q)

Leading terms:

$$
\frac{2^{n} k_{0} 1\left(K_{x}+D+H\right)}{n!} \quad \frac{D \cdot H^{n-1}}{(n-1)!}
$$

$t \in H^{0}\left(2 m A_{1}-A_{m}\right)$ doer not vanish on components of $D$.
We have a commutative diagram.



$$
0 \longrightarrow \theta_{x}\left(2 m A_{1}-D\right) \longrightarrow \theta_{x}\left(2 m A_{1}\right) \longrightarrow \theta_{D_{1}}\left(2 m A_{1}\right) \longrightarrow 0
$$

is in the image of the vertical map

$$
\begin{aligned}
& P(m) \leqslant h^{0}\left(X_{1} \theta_{x}\left(2 m A_{1}\right)\right)-h^{0}\left(X, O_{x}\left(2 m A_{1}-D\right)\right) \\
& P(m) \leq Q(m)-\theta_{(m-1)} \\
& Q_{!}^{\prime}(m) .
\end{aligned}
$$

Theorem 3.1: Fix n, $A_{1} \delta>0$. The set of $\log p^{2 i n}$ $(X, \Delta)$ satisfying the following conditions:
(1) $X$ is projective of $\operatorname{dim} n$,
(2) $(x, \Delta)$ is $l c$,
(3) Coeff $\Delta \geqslant \delta$.
(4) there exists $m \in \mathbb{Z}_{1} 20$ with $\operatorname{vol}(X, m(K x+\Delta)) \leq A$ and
(5) $\varnothing k x+m(k x+\Delta)$ is birational.

Is $\log$ biratronally bounded.
Proof: $\phi=\phi_{k x+m}(k x+\Delta)$ is a morphism $X \xrightarrow{\phi} Z$.

$$
\begin{aligned}
& \left|K x+m\left(K_{x}+\Delta\right)\right|=|M|+E, \quad M=p^{2} H \\
& \left.\qquad \operatorname{Vol(K_{x}+m(K_{x}+\Delta ))\leqslant K_{0}(((m+1)(Kx+\Delta ))\leqslant 2^{n}A}\right] \\
& G=\phi_{x} \Delta \operatorname{rod} \cdot|\quad B \in| L K x+\left(m\left(K_{x}+\Delta\right)\right) J \mid . \\
& \alpha=\max \left(\frac{1}{\delta}, 2(2 n+1)\right) .
\end{aligned}
$$

$D_{0}=$ sum of comp of $\Delta$ and $B$ which are not contracted by $\phi$.

$$
\begin{gathered}
D_{0} \leqslant \alpha(B+\Delta) \\
\alpha(m+1)\left(k_{x}+\Delta\right)-\alpha(B+\Delta) \sim_{Q} C \geqslant 0
\end{gathered}
$$



$$
\begin{aligned}
G \cdot H^{n-1} & \leqslant \overbrace{D_{0} \cdot \overbrace{(2(2 n+1) M)^{n-1}}^{D}}^{H} \\
& \leqslant 2^{n} \operatorname{vol}\left(X_{1} K_{x}+D_{0}+2(2 n+1) M\right) \\
& \leqslant 2^{n} \operatorname{vol}(X,(1+2 \alpha(m+1))(K x+\Delta)) \\
& \leqslant 2^{n}(1+2 \alpha(m+1))^{n} \operatorname{vol}(K x+\Delta) \\
& \leqslant 2^{3 n} \alpha^{n} \operatorname{kol}((m+1)(K x+\Delta)) \\
& \leqslant 2^{4 n} \alpha^{n} A \cdot \int
\end{aligned}
$$

$\rightarrow$ only depends on A,d andn

